Abstract

A computational study is carried out on the influence of turbine inlet temperature distortion (hot streak). The hot streak effects are examined from both aeromechanical (forced blade vibration) and aero-thermal (heat transfer) points of view. Computations are firstly carried out for a transonic HP turbine stage, and the steady and unsteady surface pressure results are compared with the corresponding experimental data. Subsequent analysis is carried out for hot-streaks with variable circumferential wavelength, corresponding to different numbers of combustion burners. The results show that the circumferential wavelength of the temperature distortion can significantly change unsteady forcing as well as the heat-transfer to rotor blades. In particular, when the hot-streak wavelength is the same as the nozzle guide vane (NGV) blade pitch, there is a strong dependence of the preferential heating characteristics on the relative clocking position between hot-streak and NGV blade. However, this clocking dependence is shown to be qualitatively weakened for the cases with fewer hot streaks with longer circumferential wavelengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.