Abstract

ABSTRACT A spatiotemporal/integro-difference equation model was developed and utilized to study the progress of epidemics in spatially heterogeneous mixtures of susceptible and resistant host plants. The effects of different scales and patterns of host genotypes on the development of focal and general epidemics were investigated using potato late blight as a case study. Two different radial Laplace kernels and a two-dimensional Gaussian kernel were used for modeling the dispersal of spores. An analytical expression for the apparent infection rate, r, in general epidemics was tested by comparison with dynamic simulations. A genotype connectivity parameter, q, was introduced into the formula for r. This parameter quantifies the probability of pathogen inoculum produced on a certain host genotype unit reaching the same or another unit of the same genotype. The analytical expression for the apparent infection rate provided accurate predictions of realized r in the simulations of general epidemics. The relationship between r and the radial velocity of focus expansion, c, in focal epidemics, was linear in accordance with theory for homogeneous genotype mixtures. The findings suggest that genotype mixtures that are effective in reducing general epidemics of Phytophthora infestans will likewise curtail focal epidemics and vice versa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.