Abstract

Experimental studies have been conducted to clarify the influence of horizontal harmonic excitations on the dynamic stability of a slender cantilever beam under vertical harmonic excitation. Three kinds of aluminum test beams with rectangular cross section have been used. The test beam being clamped at one end and free at the other end, was vertically stood, and was harmonically excited to both vertical and horizontal directions simultaneously. The direction of the horizontal excitation was taken parallel to one of the beam side faces, i.e. two directions were considered as X and Y directions which have the largest and smallest flexural rigidity, respectively. By varying the horizontal excitation amplitude, keeping the amplitude of excitation in the vertical direction, the influence of the horizontal excitation has been investigated on the principal instability regions in which unstable vibration of the fundamental vibration mode occurs. The excitation frequency in the vertical excitation was taken around twice the fundamental natural frequency 2f Y 1 in smallest rigidity direction, while that in the horizontal direction was taken around both the fundamental natural frequency f Y 1 and twice of it 2f Y 1. Obtained experimental results present useful fundamental data for aseismatic design of structures under earthquake containing both vertical and horizontal excitation components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call