Abstract

Gas electron multipliers (GEMs) belong to the most modern and advanced technologies in the field of gaseous detectors. Detectors, based on the GEM technology, enjoy great popularity in various fields of physics. Especially in the field of high-energy physics, GEMs are well-appreciated thanks to their flexibility in geometry, resistance to aging and excellent performance in high-rate environments. The core of the detector consists of thin foils with an etched pattern of holes. The detection principle relies on electron multiplication inside the holes, where a high electric field is present. New etching techniques have been used for the production of large-size (0.3 m2 - 0.4 m2) GEM foils needed for high-energy physics experiments. The new techniques result in different hole geometries. To better understand the gas gain dependence on the hole geometry, several measurements have been performed with a triple-GEM detector, and have been complemented by GARFIELD++ simulations. The results are compared with other recent studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call