Abstract

We fabricate a series of square-lattice subwavelength circular, rectangular, and trapezoidal air-hole arrays drilled in opaque gold thin films and measured the transmission spectra of light passing through these metallic nanostructures in the near-infrared range. The measured results show strong dependence of extraordinary optical transmission on the lattice constant, hole size, and hole shape. The wavelengths of the transmission peaks and dips are mainly determined by the lattice constant. However, they are also influenced by the parameters of the hole size and hole shape. The experimental data agree well with numerical calculation results by means of a plane-wave transfer-matrix method when the detailed geometry of the air holes is fully considered. The results indicate that the extraordinary light transmission through subwavelength metallic nanostructures of air-hole arrays are governed by excitation of surface plasmon polaritons on the metal surface and their scattering by periodic air-hole arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.