Abstract
The effect of hold times at maximum stress on fatigue behavior of an oxide–oxide ceramic composite was investigated at 1200 °C in laboratory air and in steam environments. The composite consists of a porous alumina matrix reinforced with woven mullite/alumina (Nextel™720) fibers, has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. Tension–tension fatigue tests with a ratio R (minimum to maximum stress) of 0.05, and hold times of 10 and 100 s were performed for fatigue stresses of 125 and 154 MPa in laboratory air, and for fatigue stresses of 100 and 125 MPa in steam environment. Block loading tests incorporating periods of cyclic and sustained loading were carried out to assess the effects of loading history on material behavior and environmental durability. In laboratory air, lives produced in fatigue tests with hold times exceeded those produced in creep but were shorter than those obtained in fatigue. Prior fatigue resulted in an order of magnitude improvement in creep life. Prior creep had no effect on subsequent fatigue life. Presence of steam significantly degraded the material performance. In steam, lives produced in fatigue tests with hold times were close to those obtained in creep. Prior fatigue reduced the creep resistance, and prior creep degraded the subsequent fatigue life. Composite microstructure, as well as damage and failure mechanisms were investigated. A qualitative spectral analysis showed evidence of silicon species migration from fiber to matrix, especially in steam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.