Abstract

An investigation of the impact of strong oxidation with HNO 3 on the porosity and adsorption characteristics of char and activated carbons, derived from corncobs, is presented. Texture parameters, as obtained from N 2 adsorption at 77 K, showed a considerable decrease in surface area of the activated carbons with enhanced pore widening. The extent of porosity modification was found to depend on the scheme of activation of the precursor, simple carbonization, steam pyrolysis, steam gasification of the char, or chemical activation with H 3PO 4. Surface-chemical changes were detected by FTIR spectroscopy, where absorption bands assigned to carboxyl, carboxylate, carbonyl, and phenolic groups were observed. A SEM study demonstrated the erosive effect of HNO 3, detected by the presence of disintegration of the carbon grains, with the porous structure probably containing very large macropores. As a consequence of the oxidation process, elemental analysis showed high contents of O, H and N, and TG confirmed that the weight loss distribution in the thermogram becomes slower at higher temperatures. The removal of phenol decreased as a result of the formation of oxygen functionalities. Mono-nitrophenols were adsorbed in smaller amounts than phenol, and p-nitrophenol showed a relatively higher uptake than the other two mono-nitrophenols, whereas the uptake of Methylene Blue was improved. Removal of Pb 2+ from aqueous non-buffered solution was considerably enhanced by chemical oxidation, which may be related to pore widening, increased cation-exchange capacity by oxygen groups, and the promoted hydrophilicity of the carbon surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.