Abstract

In this paper, self-healing microcapsules were prepared by using melamine–formaldehyde (MF) resin as the wall material and shellac as the core material repairing agent. In order to explore the effect of the four factors (i.e., the HLB value of emulsifier, the type of solvent, the mass ratio of shellac to rosin, and the rate of rotating) on the comprehensive performance of microcapsules, and orthogonal experiments with four factors and three levels were carried out. The results showed that the hydrophilic lipophilic balance (HLB) value of the emulsifier was the most important influencing factor. In order to further explore the relationship between the HLB value of the emulsifier and the morphology of the microcapsules and the coating rate as well as to further optimize the performance of the microcapsules, taking the HLB value of the emulsifier as the single factor variable, single-factor tests were carried out. The results showed that when the HLB value was 12.56, the microcapsules of melamine–formaldehyde resin-coated shellac–rosin mixture had a uniform distribution and high coating rate. In order to explore the self-healing properties of waterborne coatings with microcapsules, the microcapsules prepared by single-factor experiments were mixed into the waterborne coatings at mass ratios of 0%, 3.0%, 6.0%, 9.0%, 12.0%, and 15.0%. It showed that the elongation at break of the waterborne coating with the addition of 3.0% microcapsule at mass fraction was improved, and it had a higher repair rate. This study provides a new research idea for the optimization and characterization of the self-healing properties of waterborne coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call