Abstract

The genesis of new neurons from neural stem cells in the adult brain offers the hope that this mechanism of plasticity can be harnessed for the treatment of brain injuries and diseases. However, neurogenesis becomes impaired during the normal course of aging; this is also the primary risk factor for most neurodegenerative diseases. The local microenvironment that regulates the function of resident neural stem cells (the "neurogenic niche") is a particularly complex network of various signaling mechanisms, rendering it especially challenging for the dissection of the control of these cells but offering the potential for the advancement of our understanding of the regulation/misregulation of neurogenesis. In this review, we examine the factors that control neurogenesis in an age-dependent manner, and we define these signals by the extrinsic mechanism through which they are presented to the neural stem cells. Secreted signals, cell-contact-dependent signals, and extracellular matrix cues all contribute to the regulation of the aging neurogenic niche and offer points of therapeutic intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call