Abstract

Our results reinforce the notion of the need for an improved high-temperature gate bias (HTGB) test method — one which discourages the use of slow (greater than ~1 ms) threshold-voltage (VT) measurements at elevated temperatures and includes biased cool-down if room temperature measurements are performed, to ensure that any ephemeral effects during the high-temperature stress are observed. The paper presents a series of results on both state-of-the-art commercially-available devices as well as older vintage devices that exhibit enhanced charge-trapping effects. Although modern devices appear to be robust, it is important to ensure that any new devices released commercially, especially by new vendors, are properly evaluated for VT stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.