Abstract

ABSTRACTHigh and low molecular weight glutenin subunits (HMW‐GS and LMW‐GS, respectively) are the main factors determining the viscoelastic properties of wheat dough. The mechanical and viscoelastic properties of 29 samples of wheat kernels differing in HMW‐GS were evaluated with load‐compression tests. Samples were grouped by genotypes differing in HMW‐GS composition (allelic variants: Glu‐A1: null, 1, 2*; Glu‐B1: 7, 7+8, 7+9, 13+16, and 17+18; Glu‐D1: 5+10, 2+12). Groups representing Glu‐A1 1 and 2*; Glu‐B1 7, 7+9 and 17+18; and Glu‐D1 5+10 generally possessed hard grain and showed the largest kernel elasticity values, while those representing subunits Glu‐A1 null; Glu‐B1 7+8; and Glu‐D1 2+12 had soft kernels and showed lower elastic work values. Genotypes possessing HMW‐GS 1, 17+18 and 5+10 gave large SDS‐sedimentation values and better dough viscoelastic properties than those with allelels: null, 7+8, and 2+12. Kernel hardness showed significant correlation with the dough‐strength‐related parameters: SDS‐sedimentation; dough mixing time; and the alveographic parameters, W and P. There was a negative correlation between kernel plastic work and dough mixing time and the dough tenacity/extensibility parameters, P/L. The significant relationship between sedimentation tests and kernel elastic work seems to indicate that elastic work is related to genotype (protein composition). The general tendency was that higher values in kernel elastic work and size corresponded to better dough rheological quality. Mechanical properties of the kernel were significantly related to the elastic behavior measured in a single wheat kernel. The use of the compression test on individual kernels is easy, rapid and nondestructive and therefore seems to show potential use as a rapid tool in breeding to improve wheat quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.