Abstract

The characteristics and the mechanism of ferrite transformation in alloy steels which contain a carbide-forming element have attracted considerable attention for past decades. Since it is reported that the nucleation and growth of ferrite in Fe-C base alloys is accelerated by high magnetic field, the influence of a magnetic field of 12 Tesla on ferrite transformation was studied in a Fe-C- Mo alloy. Whereas a significant amount of expedition was observed at lower temperatures, the principal features of ferrite transformation, namely, a marked retardation of transformation at intermediate temperatures and premature cessation of transformation before it reaches the final equilibrium amount below the bay temperature were essentially retained. In contrast, the influence of magnetic field was much less at higher temperatures. These results are discussed in terms of the influence of magnetic field on the phase equilibrium and coupled-solute drag effects on the migration a/g phase boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.