Abstract

This work describes the effect of the hydrolysis time and pressure (0.1-400 MPa) on the proteolysis of beta-lactoglobulin A (beta-lg A) with trypsin, either conducting hydrolysis of beta-lg under pressure or hydrolysing beta-lg that was previously pressure treated. Pressurisation, before or during enzyme treatments, enhanced tryptic hydrolysis of beta-lg. Trypsin degraded pressure-modified beta-lg and pressure-induced beta-lg aggregates, favouring proteolysis to the intermediate degradation products: (Val(15)-Arg(40)), (Val(41)-Lys(69))S-S(Leu(149)-Ile(162)) and (Val(41)-Lys(70))S-S(Leu(149)-Ile(162)). These were further cleaved at the later stages of proteolysis to yield: (Val(15)-Tyr(20)), (Ser(21)-Arg(40)), (Val(41)-Tyr(60)), (Trp(61)-Lys(69))S-S(Leu(149)-Ile(162)) and (Trp(61)-Lys(70))S-S(Leu(149)-Ile(162)). Particularly, in the tryptic hydrolysates of pre-pressurized beta-lg, two other fragments linked by disulphide bonds: (Lys(101)-Arg(124))S-S(Leu(149)-Ile(162)) and (Tyr(102)-Arg(124))S-S(Leu(149)-Ile(162)), were found. These corresponded to rearrangement products induced by SH/SS exchange between the free thiol group of Cys(121) and Cys(160), that normally forms the disulphide bond Cys(66)-Cys(160). In the light of these results, structural modifications of beta-lg under high pressure are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.