Abstract

The results of experimental research of the influence of high-frequency gas-dynamical nonstationarity on the intensity of heat transfer in the intake and exhaust tract of piston engines are presented in the article. Experimental setup and methods of the experiments are described in the article. Dependences of instantaneous values of flow velocity and the local heat transfer coefficient in the intake and exhaust tract of the engine from the crankshaft rotation angle are presented in the article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.