Abstract

Abstract Modifications and resulting changes in various properties of nanocrystalline HfO2 high-k dielectric thin films with nominal thickness of 20 nm grown by atomic layer deposition technique on silicon and glass substrates were investigated as a function of swift heavy ions (SHI) irradiation. In the present work, our attention is to study the electronic excitation induced modifications in HfO2 thin films cause of formation of defects by 120 MeV Au9+(SHI) irradiation. For the same purpose, the annealed (500 °C) HfO2 thin films were irradiated with the varying fluence in the range of 1E11 to 1E13 ions/cm2. The virgin and irradiated representative HfO2 thin films were investigated by various techniques. The substantial root mean square (RMS) surface roughness (0.5–1 nm) and variation in grain size (40–52 nm) as a function of Au9+ ions irradiation were determined using atomic force microscope (AFM). The optical properties of HfO2 thin films were analyzed by measuring absorbance and transmission (54–62%) spectra in 200–700 nm wavelength range followed by calculation of optical band gap (Eg). The photoluminescence (PL) spectra obtained at excitation wavelength 220 nm indicate the formation of defects due to SHI irradiation. A change in excitation wavelength (220–260 nm) causes the shift in emission peaks towards higher wavelength. Structural investigations have been carried by Grazing Incidence X-ray Diffraction (GIXRD) techniques which reveal the variation in crystallite size as a function of different fluence. The results of a systematic XPS study of virgin and SHI irradiated samples shows the shifting of Hf 4f and O 1s peaks towards lower binding energy as compared to virgin sample. O K-edge XANES were performed to understand the ion-beam irradiation induced defect formation and their consequences on the electronic structure of HfO2 thin films. The obtained peaks in Rutherford backscattering spectrometry (RBS) affirm the existence of Hf and O elements and width of the peaks determine the sample thickness (20 nm).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call