Abstract
The objective of this study was to determine effects of room temperature and drinker design on growth and water disappearance of growing-finishing pigs (26.9 ± 3.67 to 130.9 ± 5.10 kg live body weight). A split-plot design was used with a 2 × 2 factorial arrangement of treatments: Room Temperature (RT) [Thermoneutral (TN) vs. High (HI); main plot], Drinker Design (DD; Nipple vs. Cup; sub-plot). A total of 316 pigs were used, housed in 32 pens in 4 rooms (8 pens/room; 7 pens of 10 pigs and 1 pen of 9 pigs). Two rooms were on each RT treatment. Room temperature for the TN treatment was constant throughout each day but decreased from 24°C at the start to 20°C and 18°C on d 14 and 45 of the study period, respectively. For the HI treatment, a single, cyclic RT protocol was used throughout the study (30°C from 08:00 to 19:00 h and 20°C from 20:00 to 07:00 h, with 1-h transition periods). Pens had fully-slatted concrete floors and 1 feeder and drinker (either nipple or cup); floor space was 0.67 m2/pig. Pigs had ad libitum access to standard corn-soybean diets, formulated to meet or exceed NRC (2012) nutrient requirements. Water disappearance was measured using a meter fitted to the water line supplying each drinker. There were no interactions (P > 0.05) between RT and DD treatments. Drinker Design did not affect (P > 0.05) growth performance; water disappearance was 7.3% greater (P ≤ 0.05) for Nipple than Cup drinkers. Compared to the TN treatment, the HI treatment had no effect (P > 0.05) on gain:feed ratio, but resulted in lower (P ≤ 0.05) average daily gain (6.5%) and average daily feed intake (5.5%) and greater (P ≤ 0.05) average daily water disappearance (16.8%). These results suggest that both drinker design and RT can affect water disappearance, and that the high, cyclic RT regime used reduced growth performance of growing-finishing pigs. Further research is needed to determine the contribution of water intake and wastage to treatment differences in water disappearance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.