Abstract
A series of experiments of the upward flame spread over polyethylene-coated wire with copper core were conducted in a newly designed high-pressure chamber to study the effects of the wire inclination angles and ambient pressures. The angle of inclination changed from 0° to 75° and the pressure ranged from 100kPa to 400kPa. The results show that the flame spread rate increases with the inclination angle and the pressure. The characteristic lengths including the flame length, the flame base width and the pyrolysis length present an increasing trend with increasing inclination angles, while the elevated pressure results in that the flame length and flame base width decreases and the pyrolysis length increases. Moreover, a simplified heat transfer analysis model considering the convective, radiant and conductive heat feedback is proposed to discuss the flame spread mechanism. Based on the theoretical analysis, convective heat transfer from flame and conductive heat transfer from wire core play significant roles in heating the unburned insulation with the increase of inclination angles. For the cases with higher pressure, the heat transfer from flame including heat convection and heat conduction plays a dominant role in increasing the heat feedback to the unburned wire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.