Abstract

The integration of high-κ dielectrics on MoS2 field-effect transistors (FETs) is essential for the realization of MoS2 in ultrascaled nanoelectronic devices and circuits. Most studies covering this topic are based on exfoliated MoS2 flakes or chemical vapor deposition (CVD) grown MoS2 films, whereas other techniques, such as atomic layer deposition (ALD), are also gaining attention for the growth of MoS2 in recent years. In this work, we grow large-area MoS2 by means of plasma-enhanced (PE-)ALD and evaluate the influence of high-κ dielectrics on the properties of ALD-based MoS2 FETs through electrical characterization combined with surface-chemical and high-resolution scanning transmission electron microscopy (HR-STEM) analyses. We grow HfO x , AlO x , or both by means of PE-ALD or thermal ALD on our fabricated devices and show that, in addition to the dielectric constant, three other major parameters related to the processing of the dielectrics can simultaneously affect the MoS2 FET electrical characteristics and govern its doping. These parameters are the stoichiometry of the dielectric, its carbon impurity content, and the degree to which the MoS2 surface oxidizes upon the dielectric growth. When grown at 100 °C, our HfO x films are oxygen-vacant whereas our AlO x films are oxygen-rich. In addition, carbon impurities are incorporated into the dielectrics at low deposition temperatures, being one of the likely causes of the MoS2 FET overall n-type performance in all of the studied cases. Our investigations also reveal that PE-ALD of HfO x or AlO x oxidizes the MoS2 surface, whereas thermal ALD AlO x leaves MoS2 almost intact. In this respect, if thermal ALD AlO x of proper thickness is grown between MoS2 and HfO x , it can reduce the degree to which the MoS2 surface oxidizes by HfO x and meanwhile improve the total dielectric constant, altogether leading to the most optimal electrical performance in ALD-based MoS2 FETs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.