Abstract

Laser irradiation of soybean seeds for 3 min caused a clear reduction in the number of seed-borne fungi which became more pronounced as the irradiation time was extended. Pretreatment of the seeds with methylene blue, methyl red and carmine enhanced the effect of laser. Rhizoctonia solani, Alternaria tenuissima, Cercospora kikuchii and Colletotrichum truncatum were completely eliminated when the seeds were pretreated with a dye and irradiated for 10 min. Seed germination was stimulated on exposure of the seed to 1-min irradiation. At such dose, most of the dyes were accelerators while the higher doses were inhibitory to seed germination. Chlorophyll a, chlorophyll b and carotenoid content of developed plants differed, depending on the irradiation dose and dye treatment of the seeds. In seeds irradiated for 1 or 3 min, chlorophyll a formation was less affected than chlorophyll b formation. In seeds irradiated for 10 min, both the chlorophyll contents were decreased especially in the presence of some applied dyes. On the other hand, there was an increase in carotenoid content of soybean leaves when the laser dose increased. The number and dry mass of nodules were mostly greater (as compared to the corresponding control), when the seeds irradiated for 1 or 3 min were pretreated with methyl red, chlorophenol red, crystal violet and methylene blue. Irradiation of pre-sowing seeds greatly protected soybean stands against F. solani. The disease incidence differed somewhat when the irradiated seeds were pretreated with dyes. The reduction in disease incidence was accompanied by accumulation of high proline and phenol levels in the infected root tissues of soybean, suggesting that these compounds have a certain role in the prevention of disease development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call