Abstract

Abstract Electron-beam cold-hearth melting is an emerging process used to eliminate high- and low-density inclusions during melt processing and to reduce the number of remelting steps for high quality titanium alloys. In the present work, the effect of ingot heating conditions on the evolution of ingot macrostructure and surface quality during solidification following electron-beam melting of Ti–6Al–4V was established via prototype production trials. Macrostructure observations correlated well with temperature gradients and solidification rates estimated from solidification calculations. These calculations also provided insight into the effect of melting conditions on ingot surface quality and hence associated product yield.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.