7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.foodres.2016.03.034
Copy DOIJournal: Food Research International | Publication Date: Apr 5, 2016 |
Citations: 17 |
Thermal treatment of mixed surfactant systems can have a major impact on their phase behavior through modified interactions between the surfactants. In this study, we investigated the miscibility behavior of aqueous binary surfactant systems composed of Quillaja saponin extract and sodium caseinate, pea protein, rapeseed lecithin, or egg lecithin at different concentration ratios (0–5% w/v) at pH3, 5, and 7 upon heat treatment (25–75°C). The results revealed that the heat-treated Quillaja saponin–sodium caseinate mixtures at pH7 remained miscible when the ratio of Quillaja saponins was equal or higher to the ratio of caseinate, otherwise the mixtures flocculated due to increased hydrophobic interactions. At pH3, the aggregation of Quillaja saponin–sodium caseinate structures was intensified by heating mainly through self-association of casein molecules. In Quillaja saponin–pea protein mixtures as well as in pure pea protein samples heating led to weakening of the gel structures at all tested pH values. In contrast, heating did not affect Quillaja saponin–rapeseed lecithin mixtures, which stayed miscible independent of pH due to electrostatic repulsive forces. Furthermore, the flocculated (pH5, 7) or aggregated (pH3) Quillaja saponin–egg lecithin mixtures were only slightly affected by heating. These results are important for understanding the interactions of binary surfactant systems when subjected to heating, which is a common processing step in many food applications.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.