Abstract

In the current study, we have examined the peristaltic flow of three different nanoparticles with water as base fluid under the influence of slip boundary conditions through a vertical asymmetric porous channel in the presence of MHD. The selected nanoparticles are titanium dioxide ( TiO2 , copper oxide (CuO) and silicon dioxide ( SiO2 . The Brownian motion shows that the effective conductivity increases to result in a lower temperature gradient for a given heat flux. To examine these transport phenomena thoroughly, we also consider the thermal conductivity model of Brownian motion for nanofluids, this increases the effect of the particle size, particle volume fraction and temperature dependence. The mathematical formulation is presented. Exact solutions are obtained from the resulting equations. The obtained expressions for pressure gradient, temperature and velocity profile are described through graphs for the various relevant parameters. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call