Abstract

PurposeThe lower density of powder metallurgical (PM) gears compared to solid steel gears leads to not only a lower weight but also a lower load-carrying capacity. Therefore, PM gears are cold rolled before hardening to increase the density in the highly stressed surface zone and, thus, the flank load-carrying capacity. A further approach to increase the flank load-carrying capacity is the reduction of friction and wear in the tooth contact. The purpose of this paper is to analyze the hard rolling process as a new manufacturing step in the PM process chain to influence the boundary layer.Design/methodology/approachThe investigation includes the new process of hard rolling, the variation of the cooling lubricant in the hard rolling process and the evaluation of its influence on the material properties and the flank load-carrying capacity. Therefore, the additives of the cooling lubricant are varied regarding the sulfur and phosphorous content. The load-carrying capacity is evaluated on disk-on-disk test rig and the material properties are evaluated by metallographic tests and boundary layer.FindingsThe results of the specimen characteristics in the micro and nano range show a significant influence of hard rolling on the residual stresses and the chemical surface composition. Because of hard rolling, residual compressive stresses as well as roughness are reduced and the flank load-carrying capacity is increased by high phosphorous content of the cooling lubricant.Originality/valueThis paper investigates a new manufacturing step to increase resource efficiency by increasing the flank load-carrying capacity of spur gears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.