Abstract

BackgroundStudies have found no or minimal differences in running kinematics between flexible and inflexible adult runners. The interaction between hamstring flexibility and running kinematics has not been reported in adolescent long-distance runners. Research questionDoes hamstring flexibility influence running kinematics in adolescent long-distance runners? MethodsAdolescent long-distance runners (n = 140, ages 9–19) were enrolled in our cross-sectional study. Hamstring flexibility was assessed with the forward bending Beighton task. Runners were categorized if they tested positive or negative on the forward bending task. Participants ran at a comfortable self-selected speed on a treadmill. Runners who tested positive on the forward bending task (n = 17) were matched with runners who tested negative on the task (n = 17) according to sex, physical maturation, and running speed. Statistical parametric mapping compared trunk, pelvis, hip, and knee kinematic waveforms throughout the gait cycle and independent sample t tests compared temporal-spatial parameters between the groups. ResultsRunners who tested positive on the forward bending task demonstrated significantly greater anterior pelvic tilt during stance (average difference = 4.8° ± 0.4°, p < .001) and swing (average difference = 4.3° ± 0.2°, p < .01) compared to runners who tested negative on the forward bending task. No significant differences were found between groups for the remaining kinematic waveforms or for any temporal-spatial parameters (p > .05). SignificanceThis is the first study to report the interaction between hamstring flexibility and running kinematics in adolescent long-distance runners. The greater anterior pelvic tilt demonstrated by runners with greater hamstring flexibility may place more eccentric demands on the hamstring musculature. However, as there were no other differences in joint kinematics or temporal-spatial parameters between groups, greater hamstring flexibility does not appear to have a significant interaction with running kinematics when running at sub-maximal speeds. Our results suggest hamstring flexibility does not predispose adolescent long-distance runners to sub-optimal segment positions associated with running-related injuries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.