Abstract

Copper-doped silica films have been deposited on amorphous silica (fused quartz) by magnetron co-sputtering. The resulting films were characterized for copper loading/thickness by Rutherford backscattering spectrometry, and the optical properties were evaluated by absorption and photoluminescence spectroscopies. The films were subjected to thermal treatment under a 5% H2−95% Ar-reducing atmosphere and further evaluated for surface plasmon resonance (SPR) characteristics. In addition, the occurrence of Cu nanoparticles (NPs) was evaluated by transmission electron microscopy. It is indicated that the films have effective permeability for H2, and consequently, the reduction of ionic copper takes place supporting the nucleation and growth of Cu NPs. Interestingly, along with the increase in absorption intensity of Cu NPs, the processing leads consistently to significant blue shifts in the SPR peaks. Absorption spectra were then simulated by Mie theory calculations for dielectric-embedded Cu NPs in an effort to understand the influence of particle size and medium refractive index on the SPR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call