Abstract
A stochastic, age-structured life history model was used to examine how age at maturity (theta), pre- (Zimm) and postreproductive (Zmat) mortality, and postreproductive growth rate can affect maximum reproductive rates of fish at low population size. Simulations suggest that annual (r) and per-generation (R0) metrics of population growth for Newfoundland's northern Grand Bank Atlantic cod, Gadus morhua, are primarily influenced by changes to mortality prior to and following reproduction. At observed weights at age and Zmat = 0.2, r ranged between 0.135 and 0.164 for cod maturing at between 4 and 7 years. Incremental increases in either Zimm or Zmat of 0.1 were associated with 0.03-0.05 reductions in r. To effect similar reductions, individual growth rate would have to decline by approximately one half. At observed weights at age, increases in Zmat from 0.20 to 0.45 increased the probability of negative per-generation growth from 3 to 26% for cod maturing at 4 years and from 6 to 46% for cod maturing at 7 years. Thus, even in the absence of fishing mortality, little or no population growth by Atlantic cod may not be unexpected in the presence of environmental stochasticity, particularly when accompanied by increases in mortality and declining individual growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Fisheries and Aquatic Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.