Abstract

A railway track consists of rails attached to sleepers (cross ties) which are laid in ballast. The sleeper provides support for the rail and transfer loads to the ballast and subgrade. Due to the wheel/rail interaction the rail is induced to vibrate and this vibration is transmitted to the sleepers; both the rail and the sleepers radiate sound. Existing models used to predict the sound radiation from the sleeper consider this to be completely embedded in a rigid ground; in reality, however, the sleeper is surrounded by, or embedded to some extent, in the ballast. It is therefore necessary to take these conditions into account in order to obtain a more realistic model. This paper investigates the influence of the ground in close proximity to the sleeper on its sound radiation. A 1/5 scale concrete sleeper is analyzed by using the boundary element method in 3-D. Ground absorption is introduced in terms of its acoustic impedance using the Delany-Bazley model and its effects on the sleeper radiation are predicted. Finally, the numerical results are validated by experimental results using a 1/5 scale model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.