Abstract
The influence of grinding size of the main cereal of the diet on production and egg quality traits was studied in brown hens from 33 to 65 wk of age. The experiment was completely randomized with 6 treatments arranged as a 3 × 2 factorial with 3 main cereals (barley, corn, and wheat) and 2 grinding size of the cereal (6 and 10mm screen). Each treatment was replicated 11 times (10 hens/replicate). Diets were isonutritive and contained 2,740kcal/kg AMEn and 16.8% CP. Egg production, ADFI, egg weight, and feed conversion ratio (FCR) were determined by period (4 wk) and for the entire experiment. Egg quality traits (percentage of undergrades, Haugh units, thickness, strength, color of the shell, and proportion of albumen, yolk, and shell) were measured also by period. No interactions between main cereal and grinding size of the main cereal of the diet were observed for any of the traits studied. Feed intake, egg production, and BW gain were not affected by diet or grinding size. Eggs were heavier (P < 0.01) in hens fed barley than in hens fed corn or wheat, probably because of the higher fat content of the barley diets. Also, FCR tended to improve in hens fed barley compared with hens fed corn or wheat (P = 0.07). Diet did not affect any of the egg quality traits studied. In summary, barley and wheat conveniently supplemented with enzymes, can be used in substitution of corn at levels of up to 55% in diets for laying hens, without any adverse effect on egg production or egg quality traits. Moreover, the substitution of corn by a combination of barley and supplemental fat increased egg size. Consequently, the inclusion of one or other cereal in the diet will depend primarily on their relative cost. Within the range studied, screen size (6vs. 10mm) of the cereal had limited effects on hen production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.