Abstract

The governing equations of two-dimensional bubble flow model for gas–liquid two-phase system in deep penetration molten pool of vacuum electron beam welding were developed according to the laws of mass and momentum conservation. The separation models of gas and liquid convections in bubble flow were formed by regarding the gas phase in molten pool as a particle phase, and the vacuolar fraction, velocity slip, pressure gradient and other factors were introduced into the models. The influences of the gravity state upon the convection of bubble flow and the distribution of cavity-type defects in molten pool of AZ91D magnesium alloy were studied by the method of numerical simulation based on the mathematical models. The results showed that the gravity is an important factor to drive the convection of the bubble flow in the deep penetration molten pool during vacuum electron beam welding. The gravity has an impact on the gas distribution in molten pool, thus affects the distribution of cavity-type defects in weld. Because of the gravity contributing to driving the convection of bubble flow, it is conducive to the escape of gas phase in molten pool and reducing the air rate. A larger convection velocity of gas phase is helpful to the escape of gas phase, thus reduce the tendency of cavity-type defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.