Abstract

The characteristics of convective regimes in a two-layer system have been investigated in the framework of the Boussinesq approximation of the Navier–Stokes equations. An exact invariant solution of the convection equations is used to describe a joint stationary flow of an evaporating liquid and a gas-vapor mixture in a horizontal channel. Thermodiffusion effects in the gas-vapor phase are additionally taken into account in the governing equations and interface conditions. The influence of gravity and thickness of the liquid layer on the hydrodynamical, thermal and concentration characteristics of the regimes has been investigated. Flows of the pure thermocapillary, mixed and Poiseuille’s types are specified for different values of the problem parameters. The linear stability of the evaporative convection regimes has been studied. The types and properties of the arising perturbations have been investigated and the critical characteristics of the stability have been obtained. Disturbances can lead to the formation of deformed convective cells, vortex and thermocapillary structures. The change of the instability types and threshold thermal loads occurs with the increasing thickness of the liquid layer and gravity action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.