Abstract
AbstractPolyvinyl chloride‐ (PVC)‐ based nanocomposites, containing graphite nanosheets (G), which may be used as electromagnetic wave absorbers was developed and investigated. The microstructure of polyvinyl chloride/graphite nanocomposites (PVC/G) were examined by means of X ‐ray diffraction, scanning electron microscopy (SEM), and thermal gravimetric analyses (TGA). SEM image reveals that the graphite nanosheets were well dispersed in the PVC matrix without agglomeration. Thermal stability of the PVC/G nanocomposites is improved as a result of inclusion of graphite nanosheets. The PVC/G nanocomposites were characterized to investigate the effect of dispersion of graphite nanosheets in PVC matrix. The dielectric spectroscopy of PVC/G nanocomposites in frequency range from 1 to 12 GHz has been performed. The results show that PVC/G nanocomposites exhibit high dielectric constant at the measured frequencies. Coefficient of attenuation and coefficient of reflection of PVC/G composites have been also examined in a frequency range from 1 to 12 GHz. The electromagnetic interference shielding effectiveness (EMI) depends on graphite volume fraction in the composite. The results show that the PVC/G represents a new class of conducting lightweight nanomaterial that can absorb electromagnetic waves at microwave frequency and may be promising for future commercial use. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.