Abstract
Plate-impact experiments were performed to examine the influence of grain size on the dynamic tensile (or spall) behavior of shocked polycrystalline aluminum. Ultrapure and commercially pure 1050 aluminum plates were cold rolled to 80% strain and heat treated under predetermined conditions to produce recrystallized samples with average grain sizes varying between 49 and 453μm. Well-characterized samples were subjected to plane wave loading at peak compressive stresses of 4 and 21GPa, and free-surface velocity profiles were obtained using velocity interferometry. At 4GPa, the observed pullback velocity, a characteristic feature of the spall response, was similar for different grain sizes of 1050 and ultrapure Al, suggesting that the preferential failure mode is intragranular. At 21GPa, the spall response (i.e., the pullback velocity and the signal structure) depended on the alloy content; the pullback velocity of ultrapure Al increased with increase in grain size, while it remained constant for 1050 Al. In addition, the structure of pullback signals showed a well-defined change in slope for different grain size samples in ultrapure Al, while no such feature was observed for 1050 Al. For the grain sizes examined, the σHEL was nearly independent of the grain size for 1050 Al and beyond a certain grain size for ultrapure Al.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.