Abstract

Fine-tuning of grain sizes can significantly influence the interaction between different dielectric phenomena, allowing the development of materials with tailored dielectric resistivity. By virtue of various synthesis mechanisms, a pathway to manipulate grain sizes and, consequently, tune the material's dielectric response is revealed. Understanding these intricate relationships between granulation and dielectric properties can pave the way for designing and optimizing materials for specific applications where tailored dielectric responses are sought. The experimental part involved the fabrication of dense BCT-BZT ceramics with different grain sizes by varying the synthesis (conventional solid-state reaction route and sol-gel) and consolidation methods. Both consolidation methods produced well-crystallized specimens, with Ba0.85Ca0.15O3Ti0.9Zr0.1 (BCTZ) perovskite as the major phase. Conventional sintering resulted in microstructured and submicron-structured BCT-BZT ceramics, with average grain sizes of 2.35 μm for the solid-state sample and 0.91 μm for the sol-gel synthesized ceramic. However, spark plasma sintering produced a nanocrystalline specimen with an average grain size of 67.5 nm. As the grain size decreases, there is a noticeable decrease in the maximum permittivity, a significant reduction in dielectric losses, and a shifting of the Curie temperature towards lower values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.