Abstract

We have fabricated approximately 0.5-μm-thick undoped n-BaSi2 epitaxial films with various average grain areas ranging from 2.6 to 23.3 μm2 on Si(111) by molecular beam epitaxy, and investigated their minority-carrier lifetime properties by the microwave-detected photoconductivity decay method at room temperature. The measured excess-carrier decay curves were divided into three parts in terms of decay rate. We characterized the BaSi2 films using the decay time of the second decay mode, τSRH, caused by Shockley-Read-Hall recombination without the carrier trapping effect, as a measure of the minority-carrier properties in the BaSi2 films. The measured τSRH was grouped into two, independently of the average grain area of BaSi2. BaSi2 films with cloudy surfaces or capped intentionally with a 3 nm Ba or Si layer, showed large τSRH (ca. 8 μs), whereas those with mirror surfaces much smaller τSRH (ca. 0.4 μs). X-ray photoelectron spectroscopy measurements were performed to discuss the surface region of the BaSi2 films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.