Abstract
AbstractZinc is an important alloying element in the 7000 series aluminium alloys. It is also an element that may enrich near the alloy surface during treatments of aluminium alloys by processes such as electropolishing, alkaline anodic etching and alkaline etching. The enrichment may occur since the change in Gibbs free energy per equivalent for formation of ZnO is less negative than that for formation of Al2O3. The enriched alloying element is present in an alloy layer up to ∼5 nm thick located immediately beneath the alloy/film interface. In the present study, the dependence of the enrichment of zinc on the grain orientation of the alloy is investigated for a solid solution Al‐1.1at.%Zn alloy. The enrichment of the zinc is developed by alkaline etching of the alloy. The grain orientation is determined by electron backscattering diffraction, with enrichments quantified on selected grains by Rutherford backscattering spectroscopy and medium energy ion scattering. The morphologies of the surfaces of the etched grains are characterised by scanning electron microscopy and atomic force microscopy. The findings reveal that the zinc enrichment ranges from 1.7 × 1015 atoms/cm2 to 3.9 × 1015 atoms/cm2, with the greatest enrichment occurring on a grain of (100) orientation, while differing surface topographical textures are developed on the various grains. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.