Abstract

A theoretical model is proposed describing a new physical microscopic mechanism of increased fracture toughness of nanocrystalline ceramics. According to this model, when a ceramic with a microcrack is deformed, intensive grain boundary sliding occurs near the crack tip under certain conditions. This sliding is accompanied by the formation of an array of disclination dipoles (rotational defects) producing elastic stresses. These stresses partially compensate the high local stresses concentrated near the microcrack tip and thereby hamper the microcrack growth. The proposed model is used to theoretically estimate the increase in the critical microcrack length (the length above which the catastrophic growth of microcracks occurs) caused by the formation of disclination dipoles during grain boundary sliding in nanoceramics. The increase in the critical microcrack length is a quantitative characteristic of the increased fracture toughness of nanoceramics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.