Abstract

ABSTRACTUnderstanding short crack behaviour is essential for predicting the lifetime of light water reactor components. However, crack growth rates of short cracks are unsteady due to microstructural obstacles such as grain boundaries. On the other hand, the statistical behaviour of short cracks can be deduced from crack size distributions. Some papers have pointed out that the crack size distributions obtained by stress corrosion cracking tests showed a kink in the distribution line. This kink suggests that the short crack growth rate is slow compared with that of long cracks. And it can be thought that the slow growth rate is caused by the microstructural obstacles. This study investigated the influence of grain boundaries on the short crack growth behaviour of intergranular stress corrosion cracking. A crack growth simulation model, which considered the mechanical effects of the crack kink and bifurcation by grain boundaries, was developed. The crack depth distribution obtained by the simulation also exhibited a kink in the distribution line as seen in the experimental results. This suggests that grain boundaries play an important role in short crack growth behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.