Abstract

We study the influence of gold nanoantennas on the photoluminescence signal of silicon nanocrystals. Unlike bulk silicon, which only exhibits low photoluminescence at room temperature due to its indirect band gap, silicon nanocrystals have the advantage of producing strong and size-dependent photoluminescence. Here, we place gold nanoantennas on a layered system in which silicon nanocrystals are integrated. The nanoantennas are embedded in the layered system by subsequent overgrowth. We find that the photoluminescence signal can be manipulated ranging from attenuation to enhancement. Moreover, we investigate the impact of grating coupling and the number of antennas per antenna array on the amplification of the photoluminescence signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.