Abstract

Pancreatic islets were cultured for 1 day in the presence of 1 to 20 mM glucose and islet proteins were separated on polyacrylamide gels and transferred to nitrocellulose. Pyruvate carboxylase and an unidentified biotin-containing protein were visualized with [125I]streptavidin followed by autoradiography. The amount of pyruvate carboxylase was proportional to the concentration of glucose. Estimates of the amount of the enzyme in islets were made by comparing the density of the islet pyruvate carboxylase band with a standard curve of various amounts of authentic pyruvate carboxylase. This indicated that the enzyme comprised 0.4% of total islet protein. Net synthesis of the enzyme was increased by cAMP and methyl succinate. A nuclear run-on assay showed that glucose caused increases in pyruvate carboxylase and pyruvate dehydrogenase E1α subunit transcripts and decreases in branched chain ketoacid dehydrogenase E1α transcripts in rat insulinoma (RINm5F) cells. Pancreatic islets cultured in the presence of 1 mM glucose for 1 day cannot respond to glucose with insulin release. Previous studies demonstrated that carbon flux into the citric acid cycle intermediates via both carboxylation and decarboxylation is decreased in glucose-incapacitated islets (M. J. MacDonald, 1993, Arch. Biochem. Biophys. 300, 205-214), 1993). The current results support the idea that carboxylation of glucose-derived pyruvate, as well as decarboxylation of pyruvate, is important for glucose-induced insulin secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.