Abstract

The postulated incretin factor glucagon-like peptide-1 (GLP-1) causes a glucose-dependent increase in insulin secretion from perifused rat islets. In the presence of 6 mM glucose the response to 10 nM GLP-1 is characterized by a large initial spike of secretion, followed by a brief, slowly rising phase. However, after 30–40 min of stimulation, this phase subsides to prestimulatory secretory rates. Raising the glucose level to 8 mM, however, amplifies and sustains the stimulatory effect of 10 nM GLP-1. The response to GLP-1 (10 nM) in the presence of 8 mM glucose is abolished by the metabolic inhibitor mannoheptulose (15 mM), and reduced by the calcium channel antagonist nitrendipine (5 μM), or the protein kinase C inhibitor of staurosporine (20 nM). A significant synergistic effect of GLP-1 (10 nM) and 10 μM carbachol, a cholinergic agonist, on insulin secretion was observed in the presence of 6 mM glucose. In the presence of either 6 or 8 mM glucose, GLP-1 (10 nM) has no significant effect on glucose usage or on inositol phosphate generation in [ 3H]inositol prelabeled islets. The results support the concept that GLP-1 may function as an important physiologic incretin factor, particularly when accompanied by agonists that activate phosphoinositide hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.