Abstract
Validation of predictive models in remote sensing requires a good coregistration of field and sensor data sets. However, previous research has demonstrated that Global Navigation Satellite System survey techniques often produce large positioning errors when applied to areas under forest canopies. In this article, we present a repeatable methodology for analyzing the effect of such errors when validating models that predict tree-height distributions from LiDAR data sets. The method is based on conditional probability theory applied to error positioning and includes an error assessment of the surveying technique. A technical criterion for selecting the plot radius that avoids significant effects of positioning errors was proposed. We demonstrated that for a plot radius greater than 10 m, the effects of positioning errors introduced by a phase-differential device were insignificant when studying forest tree-height distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.