Abstract

Varied levels of fluorinated amino acid have been introduced biosynthetically to test the functional limits of global substitution on enzymatic activity and stability. Replacement of all the leucine (LEU) residues in the enzyme chloramphenicol acetyltransferase (CAT) with the analog, 5',5',5'-trifluoroleucine (TFL), results in the maintenance of enzymatic activity under ambient temperatures as well as an enhancement in secondary structure but loss in stability against heat and denaturants or organic co-solvents. Although catalytic activity of the fully substituted CAT is preserved under standard reaction conditions compared to the wild-type enzyme both in vitro and in vivo, as the incorporation levels increase, a concomitant reduction in thermostability and chemostability is observed. Circular dichroism (CD) studies reveal that although fluorination greatly improves the secondary structure of CAT, a large structural destabilization upon increased levels of TFL incorporation occurs at elevated temperatures. These data suggest that enhanced secondary structure afforded by TFL incorporation does not necessarily lead to an improvement in stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.