Abstract

Dopingless (DL) and junctionless devices have attracted attention due to their simplified fabrication process and low thermal budget requirements. Therefore, in this work, we investigated the influence of low band gap Germanium (Ge) instead of Silicon (Si) as a “Source region” material in dopingless (DL) tunnel field-effect transistor (DLTFET). We observed that the Ge source DLTFET delivers much better performance in comparison to Si DLTFET under various analog/RF figure of merits (FOMs), such as transconductance (gm), transconductance generation factor (TGF) (gm/Id), output conductance (gd), output resistance (RO), intrinsic gain (gmRO), intrinsic gate delay (τ) and RF FOMs, like unity gain frequency (fT), gain bandwidth product (GBW) along with various gate capacitances. These parameters were extracted using 2D TCAD device simulations through small signal ac analysis. Higher ION/IOFF ratio (1014) of Ge source DLTFET can reduce the dynamic as well as static power in digital circuits, while higher transconductance generation factor (gm/Id) ∼ 2287 V−1 can lower the bias power of an amplifier. Similarly, enhanced RF FOMs i.e unity gain frequency (fT) and gain bandwidth product (GBW) in Gigahertz range projects the proposed device preference for RF circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.