Abstract

Deep underground cavity is often damaged under the combined actions of high excavating-induced local stresses and dynamic loading. The fracturing zone and failure type are much related to the initial geostress state. To investigate the influence of geostress orientation on fracture behaviours of underground cavity due to dynamic loading, implicit to explicit sequential solution method was performed in the numerical code to realize the calculation of geostress initialization and dynamic loading on deep underground cavity. The results indicate that when the geostress orientation is heterotropic to the roadway’s floor face (e.g., 30° or 60°), high stress and strain energy concentration are presented in the corner and the spandrel of the roadway, where V-shaped rock failure occurs with the release of massive energy in a very short time. When the geostress orientation is orthogonal to the roadway (e.g., 0° or 90°), the tangential stress and strain energy distribute symmetrically around the cavity. In this regard, the stored strain energy is released slowly under the dynamic loading, resulting in mainly parallel fracture along the roadway’s profile. Therefore, to minimize the damage extent of the surrounding rock, it is of great concern to design the best excavation location and direction of new-opened roadway based on the measuring data ofin situgeostresses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.