Abstract

A numerical study of the gas–liquid–solid multiphase flow in hydrocyclones is presented. Three models of turbulence, the RNG k–e model, the Reynolds stress model and Large eddy simulation with the volume of fluid model (VOF) multiphase model for simulating air core are compared in order to predict axial and tangential velocity distributions. This presentation is mainly aimed at identifying an optimal method, used to study effective parameters, based on which, eventually, effect of inlet flow rate variations and body dimension variations such as underflow diameter, overflow diameter and cone angle on the separation performance and pressure drop are investigated. The results are then used in the simulation of particle flow described by the stochastic Lagrangian model. The results suggest that the predicted size classifications are approximately similar to those of RSM and LES methods. Predictions using the RSM model are found in agreement with experimental results with a marginal error within the range of 4 to 8%. Proceeding model validation, parametric studies have been carried out concerning the influence of velocity inlet, particle size and body dimension such as underflow and overflow diameter and cone angle. The predictions demonstrate that the flow fields in the hydrocyclones with different sizes and lengths are different, which yields different performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.