Abstract

Even though the cycloidal rotor concept has been around for almost a century, it is still not as popular as it should be. Most often it is used to propel unmanned aerial vehicles or sea-going ships, or it is applied as a river- or sea-energy converter. Despite the possibility of directing the flow by changing the inclination angle of blades and the possibility of working in both directions, there are no scientific studies on the use of the concept in HVAC (heat, ventilation and air conditioning). One of the most important elements characterizing the operation of the cycloidal rotor is the cycloidal function describing the change in the angles of the blades during rotation. To properly design a cycloidal rotor for a preferred application, an analysis of the rotor geometrical parameters must be performed and analyzed. This was performed on a four-blade rotor equipped with CLARK Y blades. Using Ansys CFX software, a CFD model of a fan operating with various cycloidal functions was created. The results were compared with the experimental data with the use of the LDA technique. Different velocity profiles were obtained despite the use of cycloidal functions with similar waveforms and small angular differences. This is due to the considerable sensitivity of the cycloidal regulation system to differences in the geometrical sizes that describe it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call