Abstract

Among the major concerns for high aspect-ratio, turbine blades are forced and self-excited (flutter) vibrations, which can cause failure by high-cycle fatigue (HCF). The introduction of friction damping in turbine blades, such as by coupling of adjacent blades via under platform dampers, can lead to a significant reduction of resonance amplitudes at critical operational conditions. In this paper, the influence of basic geometric blade design parameters onto the damped system response will be investigated to link design parameters with functional parameters like damper normal load, frequently used in nonlinear dynamic analysis. The shape of a simplified turbine blade is parameterized along with the under platform damper configuration. The airfoil is explicitly included into the parameterization in order to account for changes in blade mode shapes. For evaluation of the damped system response, a reduced-order model for nonlinear friction damping is included into an automated three-dimensional (3D) finite element analysis (FEA) tool-chain. Based on a design of experiments approach, the design space will be sampled and surrogate models will be trained on the received dataset. Subsequently, the mean and interaction effects of the geometric design parameters onto the resonance amplitude and safety against HCF will be outlined. The HCF safety is found to be affected by strong secondary effects onto static and resonant vibratory stress levels. Applying an evolutionary optimization algorithm, it is shown that the optimum blade design with respect to minimum vibratory response can differ significantly from a blade designed toward maximum HCF safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call