Abstract

BackgroundTelocytes play key roles in maintenance of organ/tissue function and prevention of organ injury. However, there are great challenges to investigate telocytes functions using primary telocytes, due to the difficulties of isolation, identification, and stability. The present study aims at constructing continuous cell strain of mouse lung telocyte cell line with stable characters by gene modification and investigating biological behaviors and responses of gene-modified telocytes to inflammation.MethodsMouse primary lung telocytes were isolated and identified using immune-labeling markers and immunoelectron microscopy. Primary telocytes were transformed with Simian vacuolating virus 40 small and large T antigen (SV40). Biological characters, behaviors morphology, and proliferation of those gene-modified telocytes were defined and monitored dynamically for 50 generations, as compared with primary lung telocytes. Cell cycle of mouse primary lung telocytes or gene-modified telocytes was detected by flow cytometry.ResultsGene modified telocytes of generations 5, 10, 30 and 50 were observed with telopodes and also showed CD34 and ckit positive. Multiple cellular morphology were also observed on telocyte cell-line under monitor of celliq and enhanced cell proliferation were showed. SV40 transduction was also reduced apoptosis and increased the ratio of S and G2 phases in telocyte cell-line.ConclusionWe successfully constructed mouse lung telocyte cell-line which maintained the biological properties and behaviors as primary telocytes and could responses to inflammation induced by LPS. Thus, gene-modified lung telocytes, Telocyte Line, would provide a cell tool for researchers exploring the roles and applications of telocytes involved in physiological and pathological states in future.

Highlights

  • Telocytes play key roles in maintenance of organ/tissue function and prevention of organ injury

  • The positive staining of vimentin and CD34 was detected in primary lung TCs and T­ CsSV40, as presented in Fig. 2c, d

  • In order to overcome those limits and difficulties, the present study develops a mouse lung telocyte cell-line by gene editing with lentivirus particles containing the anti-aging gene from Simian vacuolating virus 40 (SV40) gene

Read more

Summary

Introduction

Telocytes play key roles in maintenance of organ/tissue function and prevention of organ injury. The present study aims at constructing continuous cell strain of mouse lung telocyte cell line with stable characters by gene modification and investigating biological behaviors and responses of gene-modified telocytes to inflammation. Gene modification is considered as a potential therapy to genetically prevent and treat diseases, even though a large number of factors still need to clarified, e.g. safety, efficacy, and complexity. The present study investigates potential effects of gene modification on morphological phenomes, biological behaviors and functions, as well as responses to inflammation in lung TCs. An anti-aging gene from Simian vacuolating virus 40 was transferred as the target gene into primary TCs isolated from mouse lungs to improve the longevity of cells, since primary TCs hardly survive in the in vitro system for a few weeks or months [5,6,7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call