Abstract

Characteristic right ventricle (RV) remodelling is related to endurance exercise in male athletes (MAs), but data in female athletes (FAs) are scarce. Our aim was to evaluate sex-related influence on exercise-induced RV remodelling and on RV performance during exercise. Forty endurance athletes (>10 training hours/week, 50% female) and 40 age-matched controls (<3h moderate exercise/week, 50% female) were included. Echocardiography was performed at rest and at maximum cycle-ergometer effort. Both ventricles were analysed by standard and speckle-tracking echocardiography. Endurance training induced similar structural and functional cardiac remodelling in MAs and FAs, characterized by bi-ventricular dilatation [~34%, left ventricle (LV); 29%, RV] and normal bi-ventricular function. However, males had larger RV size (p < 0.01), compared to females: RV end-diastolic area (cm2/m2): 15.6 ± 2.2 vs 11.6 ± 1.7 in athletes; 12.2 ± 2.7 vs 8.6 ± 1.6 in controls, respectively, and lower bi-ventricular deformation (RV global longitudinal strain (GLS) (%): -24.0 ± 3.6 vs -29.2 ± 3.1 in athletes; -24.9 ± 2.5 vs -30.0 ± 1.9 in controls, and LVGLS: -17.5 ± 1.4 vs -21.9 ± 1.9 in athletes; -18.7 ± 1.2 vs -22.5 ± 1.5 in controls, respectively, p < 0.01). During exercise, the increase in LV function was positively correlated (p < 0.01) with increased cardiac output (∆%LV ejection fraction, r = +0.46 and ∆%LVGLS, r = +0.36). Improvement in RV performance was blunted at high workloads, especially in MAs. Long-term endurance training induced similar bi-ventricular remodelling in MAs and FAs. Independently of training load, males had larger RV size and lower bi-ventricular deformation. Improvement in RV performance during exercise was blunted at high workloads, especially in MAs. The potential mechanisms underlying these findings warrant further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.