Abstract

A spiral bevel gear is subject to a special load in ultrasonic lapping, which is not only a processing object but also a processing tool, it is necessary to study dynamic characteristics of an ultrasonic vibration system. First, the spiral bevel gear is reasonably simplified to a frustum, which is then combined with a horn to form a new type of composite horn. Based on the theory of plane longitudinal wave propagation, the resonance mathematical model of the gear’s ultrasonic vibration system is established, and the frequency equation of the vibration system with gear characteristic parameters is obtained. Second, the frequency and displacement characteristics of an ultrasonic vibration system are analyzed by means of design examples, and the influence of the law of gear characteristic parameters on dynamic characteristics of the vibration system is studied. Finally, ultrasonic lapping and vibration measurement experiments are carried out using two pairs of different hypoid gears. The results show that the change in dynamic characteristics of an ultrasonic vibration system has a large influence on the finished machining quality of the gear. Therefore, it is necessary to consider the gear characteristic parameters when ultrasonic vibration system is designed. The research results provide an accurate theoretical basis for the detailed design of an ultrasonic lapping vibration system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call